THE YELLOW SYMBIOTIC STAR GH GEMINORUM

- U. Munari¹ A. Siviero¹ C. Gualdoni² G. Cherini² S. Moretti² M. Graziani² S. Tomaselli² L. Baldinelli² A. Maitan² A. Frigo² I. Bano² A. Englaro² G. Cetrulo²
- ¹ INAF Osservatorio Astronomico di Padova, 36012 Asiago (VI), Italy
- ² ANS Collaboration, c/o Osservatorio Astronomico, 36012 Asiago (VI), Italy

Received 2005 April 10; revised 2005 June 14

Abstract. In 2005 we have begun a tight spectroscopic and UBVRcIc photometric monitoring of the poorly known symbiotic star GH Gem. Its absorption continuum is that of a K3III metal poor, low reddening giant, showing only weak, low ionization emission lines, with strong line profile modulation. The long term photometric evolution in V band is dominated by a marked periodicity at 331.774 day and ΔV =0.8 mag amplitude, while a sinusoidal Δ mag=0.6 and $P\sim$ 72.5 variability modulate the brightness at shorter wavelengths.

Key words: stars: symbiotic stars – stars: individual (GH Gem)

GH Gem (α = 07 04 12.78, δ =+12 03 34.3, J2000) has been so far among the less studied symbiotic stars. No one paper or individual note or communication to conferences has been devoted to it. Even the IUE satellite, so prolific on symbiotic stars, never observed it.

GH Gem was discovered by Hoffmeister (1944), who reported $12.5 \le m_{pg} \le 15.5$ as the variability range. It was considered as belonging to the RW Aur sub-class of T Tau stars (Glass & Penston 1974) and it was also classified as a F2 high galactic latitude blue variable (Bond 1978). Its association with symbiotic stars by Kenyon (1986) did not triggered major attention from professionals, but had the merit to bring it to the attention of amateurs that soon started to collect an abundant and regular mass of data.

Since fall of 2005 we are carrying out an intensive photometric and spectroscopic monitoring of GH Gem as part of the ANS (Asiago Novae and Symbiotic stars) Collaboration. Spectra are collected with the 1.82m and 1.22m telescopes operated in Asiago by INAF Astronomical Observatory of Padova and University of Padova, Department of Astronomy, respectively. UBVRcIc CCD photometry is obtained with various telescopes belonging to ARAR (Bastia, RA), Osservatorio P. Pizzinato (Bologna), GAPC (Zugna, UD), Museo Civico di Rovereto (TN) and other private observatories in Como and Trieste. All photometric observations are accurately placed on the UBVRcIc comparison sequence published by Henden and Munari (2001).

U. Munari et al.

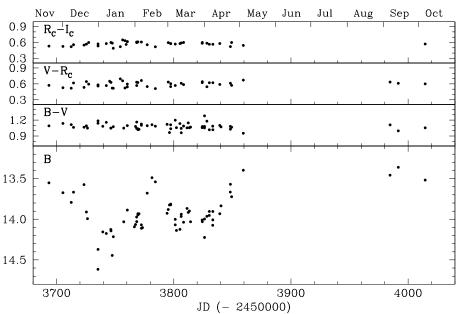


Fig. 1. Light- and color-curves of GH Gem from our 2005-2006 observations.

The BVRcIc photometric evolution during the last year (fall 2005 - fall 2006) is shown in Figure 1. The major feature is a $\Delta B{\sim}0.6$ mag modulation at the shorter wavelengths. When combined with results from 11 blue plates from the archives of the Asiago 67/92 cm Schmidt telescope covering the years 1967-1981, the B band CCD data indicate a well shaped sinusoidal variability with a 72.5 days periodicity (cf. Figure 2, right panel). The B ${\sim}14.6$ minima occurred on 1971 Jan 24, 1981 Jan 6 and 2005 Dec 31. Fourier analysis of 2314 visual estimates collected by AAVSO, VSNET and VSOLJ provides a clean and strong peak at 331.774 day. The phase-averaged corresponding lightcurve is presented in Figure 2 (left panel). The nature of these two distinct periodicities has not yet been firmly established and it will be subject to further intensive photometric monitoring during the 2006-2007 observing season.

The optical low resolution spectrum of GH gem is presented in Figure 3. Its absorption continuum is that of a K3III metal poor, low reddening giant. This is confirmed by the comparison in Figure 3 with the spectrum of HD 64960, a MK standard for the K3III spectral type, which shares the metallicity of the solar neighborhood. GH Gem shows only weak, low ionization emission lines, with ${\rm H}\alpha$ displaying a strong, multi-component profile modulation. Note in Figure 3 the higher flux at bluer wavelengths due to the combined presence of the hot companion and emission from the ionized circumstellar gas.

ACKNOWLEDGMENTS. We would like to thank A. Henden and T. Kato for communicating the AAVSO, VSNET and VSOLJ data on GH Gem.

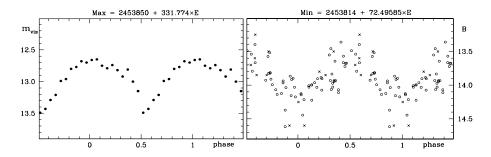
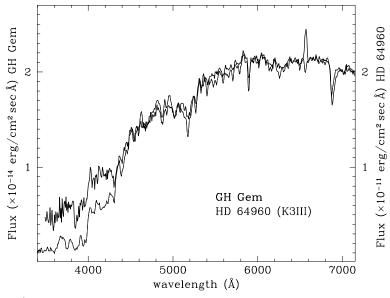



Fig. 2. left: Phase-averaged lightcurve (bin width = 0.05×period) of GH Gem from the visual estimates collected by AAVSO, VSNET and VSOLJ over the interval 1985-2005. right: Phase plot of our CCD B band data in Figure 1 (open circles) and photographic B band data from 11 plates (exposed between 1967 and 1981) from the archive of the Asiago Schmidt telescopes (crosses).

Fig. 3. A low resolution spectrum of GH Gem compared to that of HD 64960, MK standard for the K3III spectral type.

REFERENCES

Bond H.E. 1978, PASP 90, 526

Glass I.S., Penston M.V. 1974, MNRAS 167, 237

Henden A., Munari U. 2001, A&A 372, 145

Hoffmeister C. 1944, AN 274, 176

Kenyon S.J. 1986, The Symbiotic Stars, Cambdrige Univ. Press